

A Basic Guide to Analyzing Individual Scores Data with SPSS

Step 1. Clean the data file

Open the Excel file with your data. You may get the following message:

The file format and extension of 'SAILS-example.xls' don't match. The file could be corrupted or unsafe. Unless you trust its source, don't open it. Do you want to open it anyway? Yes No Help	Micros	soft Excel	×
Was this information halpful?	<u> </u>	The file format and extension of 'SAILS-example.xls' don't match. The file could be corrup or unsafe. Unless you trust its source, don't open it. Do you want to open it anyway? Yes No Help	ted

If you get this message, click yes.

Delete the first 2 lines of the data file so that the first row contains the names of the variables.

XI	₽ 5× 0	· ~ ∓			SAILS-exam	nple.xls - Exce	d			? 🗹 🗕	∃ ×
E	FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW Acrobat DeMars, Christine E 🖳										
A1	1 \cdot : \times \checkmark f_x Project SAILS Individual Scoring Data for Cohort A Post 2013 \checkmark										
	А	В	С	D	E	F	G	Н	1	J	
1	Project SA	AILS Individu	al Scoring E	Data for Col	nort A Post	2013					
2											
3	Student lo	Class Stan	Major	Item #14	Item #27	Item #28	ltem #29	Item #30	Item #60	Item #62	Iter
4	001-262	4	260	0	0	0	0	0	0	0	
5	003-680	3	250	0	0	1	0	1	1	0	
6	010-715	4	260	1	0	0	0	1	0	1	
7	023-967	3	260	0	1	0	1	1	1	1	
8	024-210	4	190	1	0	1	1	1	0	1	
9	037-023	2	210	0	0	0	0	0	0	1	
10	047-233	4	260	0	1	0	0	0	0	1	
11	055-566	4	180	0	0	0	0	0	1	1	
12	064-390	3	240	0	0	0	0	1	0	0	
13	079-650	4	240	0	0	1	0	1	1	1	
14	079-812	4	230	1	1	1	0	1	1	1	
16	093-203	4	160	1	0	1	1	1	1	1	
17	105-736	2	260	0	1	0	1	1	1	0	
18	122-421	2	140	0	1	1	1	1	0	1	-
-	► SA	ILS-example	e (+)		_	_	: •			_	•
REAL	ЭY										- 100%

Then delete all lines after the data. (Note that you will need the information in these lines later so save it in another worksheet or file. Then you will be able to check and see that students in Major 130 were business majors, using the listing below as an example.)

xI	- 5- 2	×			SAILS-exam	nple.xls - Exce	1			? 🗹 🗕	8 X
F	ILE HOI	ME INSER	T PAGE LA	AYOUT FO	DRMULAS	DATA R	EVIEW	/IEW Acrol	oat DeMars	s, Christine E	- 0
A9	2	· : ×	✓ fx	Class Star	ndings						~
	А	В	С	D	E	F	G	Н	I.	J	
90	999-547	4	150	1	0	0	(0 1	1	1	
91											
92	Class Stan	dings									
93	1: Freshm	an									
94	2: Sophon	nore									
95	3: Junior										
96	4: Senior										
97	5: Other										
98											
99	Majors	· /- ·									
100	110: Agric	ulture/Envi	ronmental S	studies							
101	120: Archi	tecture									
102	130: Busir	iess	/I								
103	140: Comi	nunications	Journalism	1							
104	150: Educ	ation	putor Scio								
105	170: Cono	reering/Con	iputer Scier	ice							
107	190: Hoolt	h Scioncos									
107	SA	ILS-example	(+)				: 4				•
REAL)Y						COUNT:	15 🎹 🗐	<u>ا ا</u>		100%

Save the file with a new name.

Step 2. Import the data file into SPSS

Open SPSS, and go to File -> Open -> Data

🝓 Untitled1 [DataSet0] - IBM SPSS S	tatistics Data	Editor									_	e ×
File Edit View Data Transform Analyze I	Direct Marketing	<u>G</u> raphs	Utilities	Add-ons	Window	Help						
New	😰 🔚 🐴 🗮		M									
Open ·	€ D <u>a</u> ta								Vis	ible: 0	of 0 Va	riables
Open Data <u>b</u> ase	Syntax	var	var	var var	var	var	var	var	var	var	var	var
⊜Rea <u>d</u> Text Data	Output											-
Close Ctrl+F4	Interpreter Science Interpreter Science											
■ <u>S</u> ave Ctrl+S		·										
Save As												
Save All Data												
Export to Database												
■Mark File Read Only												
r ■Rena <u>m</u> e Dataset												
Display Data File Information												
⊠Cache Data												
Stop Processor Ctrl+Period												
Repository												
Print Preview												
●Print Ctrl+P												
i Recently Used Data												
Recently Used Files												
Exit			***									
Data View Variable View												
Data				IBM	I SPSS S	tatistics	s Proce	ssor is	ready			

In the dialog box, choose "Excel" for "Files of type:"

Navigate to the folder where you saved the Excel file and click on your file so that the name shows up in the File name box. Click "Open" and then "OK" in the next box (make sure "Read variable names from the first row of data" is checked).

🤹 Open I	Data		×
Look in: 🖪 SA		1	
	IRTvsRaw	Validation	
	Summer2013	SAILS-example.xls	
2013	n temp	SAILS-example2.xls	
4			•
File name:	SAILS-example2.xls		Open
Files of type:	Excel (*.xls, *.xlsx, *.xlsm)	-	Paste
🗉 Minimize s	tring widths based on observed	values	Cancel
	Retrieve File From Re	epository	Help
🍓 Openi	ing Excel Data Source	×	

Upenin	
E:\Christine\	SAILS\SAILS-example2.xls
Read varial	ble names from the first row of data
Worksheet:	SAILS-example [A1:BH88]
Range:	
Maximum wid	oth for string columns: 32767
	OK Cancel Help

Your data should now look something like this:

ile E	Edit <u>V</u> iew <u>D</u> at	a <u>T</u> ransform <u>A</u> nal	yze Direct <u>M</u> arketing	g <u>G</u> raphs <u>U</u> tilities	Add-ons Window	Help		
<u>ا 🖻</u>	i 🔒 🔲 🖛	· 🛥 📲 🏪 🗐 🛛	M 🐮 🖬 🚍 🐴	🧮 🛃 🕗 🍋 🤻	5			
							Visible: 60 of 60 \	/ariable
	StudentIde ntifier	ClassStanding	Major	Item#14	Item#27	Item#28	Item#29	Iter
1	001-262	4	260	0	0	0	0	
2	003-680	3	250	0	0	1	0	
3	010-715	4	260	1	0	0	0	
4	023-967	3	260	0	1	0	1	
5	024-210	4	190	1	0	1	1	
6	037-023	2	210	0	0	0	0	
7	047-233	4	260	0	1	0	0	
8	055-566	4	180	0	0	0	0	
9	064-390	3	240		0	0	0	
10	079-650	4	240	0	0	1	0	
11	079-812	4	230	0	1	0	0	
12	093-203	4	240	1	0	1	0	
13	097-264	4	160	0	0	0	1	
14	105-736	2	260	0	1	0	1	
15	122-421	2	140	0	1	1	1	
16	126-610	4	240	1	0	1	1	
17	126-787	3	150	0	0	0	1	
10	100 700		0.40	^	^		^	þ

Step 3. Performing an Analysis

Analysis 1. Comparisons of Groups with ANOVA and Tukey Post Hoc

You might want to know if students from different classes or majors scored statistically significantly differently on the test. Statistical significance means that the differences are unlikely to be this large or larger due to chance; it does not always mean the differences are large enough to be meaningful (that requires personal judgment). You can use an ANOVA (analysis of variance) to estimate this.

There are many ways to run an ANOVA in SPSS. Here is an example using the one-way ANOVA procedure.

•	*Untitled2 [DataSet1] - I	BM SPSS Statistics Data E	dit	or					_ 6	ı x
File E	dit <u>V</u> iew <u>D</u> a	ta <u>T</u> ransform	Analyze Direct Marketing G	èra	phs <u>U</u> tilities	Add-ons Window	Hel	р			
) 🗁 🔚	i 🖨 🛄 🖛	· 🛥 📲 📥	Reports	۲	4 🔷 🌑 🤘	5					
			Descriptive Statistics	۲					Visible: 60 of 60) Varia	ables
	StudentIde	ClassStand	Tables	۲	em#14	Item#27		tem#28	Item#29	I	ter
	ntifier		Compare Means	×	Means						
1	001-262		General Linear Model	۲	⊡ One- <u>S</u> am	ple T Test		0	0		
2	003-680		Generalized Linear Models	S)	Independ	ent-Samples T Test	t	1	0		
3	010-715		Mixed Models	×	Paired-Sa	mples T Test		0	0		
4	023-967		Correlate	۲	One-Way	ANOVA		0	1		
5	024-210		Regression	•		U		1	1		
6	037-023		Loglinear	۲	0	0		0	0		
7	047-233		Neural Networks	۲	0	1		0	0		
8	055-566		Classify	۲	0	0		0	0		
9	064-390		Dimension Reduction	۲		0		0	0		
10	079-650		Scale	۲	0	0		1	0		
11	079-812		Nonparametric Tests	۲	0	1		0	0		
12	093-203		Forecasting	۶.	1	0		1	0		
13	097-264		Survival	۲	0	0		0	1		
14	105-736		Multiple Response	•	0	1		0	1		
15	122-421		Missing Value Analysis		0	1		1	1		
16	126-610		Multiple Imputation	•	1	0		1	1		
17	126-787		Complex Samples	۶	0	0		0	1		
	100 700		Quality Control			^			^		
Data	View Variable	e View	ROC Curve								
One-V	Vay ANOVA					IBM SPSS	Statis	tics Processor i	s ready		

Analyze -> Compare Means -> One-Way ANOVA

Choose the dependent variable (the variable on which you want to compare groups – either Percent Correct or Number Correct) and use the arrow key to click it into the Dependent List. Choose Class Standing or Major as the Factor.

If you have more than two groups (for example, freshmen, sophomores, juniors, and seniors), you will likely want to compare differences between pairs of groups. Click the "Post Hoc" button.

😭 One-W	ay ANOVA	×
	Dependent List: Cor	trasts
🖋 Major 🧂	Percent Co	st Hoc
💰 Item #14		
& Item #27		otions
♣ Item #28	Boo	otstrap
♣ Item #29		
♣ Item #30		
♣ Item #60	Factor:	
♣ Item #62	🖌 🖌 Class Stan	
OK	Paste Reset Cancel H	lelp

ia One-Way	y ANOVA: Post Ho	c Multiple Comparisons
Equal Variance	es Assumed	
□ <u>L</u> SD	<u>□ S</u> -N-K	□ <u>W</u> aller-Duncan
<u>B</u> onferroni	▼Tukey	Type I/Type II Error Ratio: 100
🗏 Sidak	■Tu <u>k</u> ey's-b	Dunn <u>e</u> tt
■ Scheffe	<u>□</u> Duncan	Control Category : Last
<u> </u>	<u>■ H</u> ochberg's GT2	Test
□ R-E-G-W <u>Q</u>	<u> </u>	<u> </u>
Equal Variance	es Not Assumed	
□ Ta <u>m</u> hane's T	2 Dunnett's T <u>3</u>	□Games-Howell □Dunnett's C
Significance lev	/el: 0.05	
	Continue	Cancel Help

These post-hoc tests (except for LSD) are methods for keeping the TOTAL Type I error rate, across all comparisons, below the level specified in the Significance Level box. Tukey is one of the most common and is recommended.

Once Tukey (or other post-hoc test) is selected, click Continue and return to the One-Way ANOVA box. At this point, if you haven't run the means (averages) for each group, click Options. Here you can check "Descriptive."

💼 One-Way ANOVA: Options 🗙						
Statistics						
☑ Descriptive						
Fixed and random effects						
■ <u>H</u> omogeneity of variance test						
■ <u>B</u> rown-Forsythe						
□ <u>W</u> elch						
<u>■ M</u> eans plot						
Missing Values						
■Exclude cases analysis by analysis						
• Exclude cases listwise						
Continue Cancel Help						

Click Continue, then once you are back at the One-Way ANOVA box, click OK. You will get output similar to this:

Percent Correct

	Ν	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
2	7	39.98571%	12.057975%	4.557486%	28.83395%	51.13748%	27.300%	61.800%
3	15	37.10000%	6.902484%	1.782214%	33.27753%	40.92247%	27.300%	47.300%
4	65	47.83692%	12.549683%	1.556597%	44.72726%	50.94658%	23.600%	76.400%
Total	87	45.35402%	12.409400%	1.330427%	42.70922%	47.99883%	23.600%	76.400%

My dataset had 7 sophomores, 15 juniors, and 65 seniors (column headed "N"). With this small sample, it would be a good idea to combine sophomores and juniors into a single group. However, to illustrate multiple group comparisons, they are separate for this example.

The juniors scored approximately 3 percentage points below the sophomores, but the seniors scored nearly 8 percentage points above the sophomores (column headed "Mean").

The column labelled "Std. Deviation" indicates how much the scores varied within groups. The juniors' scores varied less than the sophomores' or seniors' scores.

The column labelled "Std. Error" is the standard error of the group mean—the standard deviation of the scores divided by the square root of the sample size. The sophomores and seniors have roughly similar standard deviations, but the seniors have a smaller standard error (more stable mean) because the mean is based on more students.

The "95% Confidence Interval" gives a plausible range¹ for the mean—the interval will be narrower when the standard error is smaller. Finally, "Minimum" and "Maximum" are the lowest and highest scores in each group.

The ANOVA table is also part of the output. It answers the question, "Overall, do the groups differ significantly in their mean scores?"

ANOVA							
Percent Correct							
	Sum of Squares	df	Mean Square	F	Sig.		
Between Groups	1624.376	2	812.188	5.872	.004		
Within Groups	11619.040	84	138.322				
Total	13243.416	86					

¹ If we drew repeated samples from a population and constructed 95% confidence intervals for each sample, 95% of the ranges would include the population mean.

Conventionally, if the probability (the value in the Sig column) of observing group means that differ this much or more is < .05, the groups are deemed to be significantly different. Differences this large or larger would occur by chance less than 5% of the time if the group means were equal. In this case, we would report: "The groups were statistically significantly different ($F_{2,84}$ = 5.872, p = .004)."

Post Hoc Tests Multiple Comparisons

Dependent Variable: Percent Correct

Tanto y Tio	-					
(I) Class (J) Class		Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
Standing Standing					Lower Bound	Upper Bound
2	3	2.885714%	5.383468%	.854	-9.95901%	15.73044%
2	4	-7.851209%	4.678493%	.220	-19.01390%	3.31148%
2	2	-2.885714%	5.383468%	.854	-15.73044%	9.95901%
3	4	-10.736923% [*]	3.368900%	.006	-18.77498%	-2.69887%
4	2	7.851209%	4.678493%	.220	-3.31148%	19.01390%
	3	10.736923% [*]	3.368900%	.006	2.69887%	18.77498%

*. The mean difference is significant at the 0.05 level.

The post-hoc table shows which of the groups are different from each other. The Tukey test takes into account that we are computing three differences and adjusts the reported significance levels accordingly.

The "Sig" column indicates the probability of a difference in means this large or larger if there were no difference. The difference between sophomores (group 2) and juniors (group 3) is not statistically significant (p = .854), nor is the difference between sophomores and seniors (group 4) (p = .220). Juniors and seniors are significantly different (p = .006). Seniors scored 10.7 percentage-points higher. A plausible range for the difference between seniors and juniors is 2.7 to 18.8 percentage points. The range is large because the sample size is small. The difference of 10.7 percentage-points is an unstandardized effect size.

Analysis 2. Selecting Groups to Analyze

Comparisons between students in different majors might also be of interest. Unless your sample is very large, you will want to select the most common majors or combine related majors. To see how many students you have in each major within each class, run Crosstabs (Analyze -> Descriptive Statistics -> Crosstabs)

🞼 *Output1 [Document1] - IBM SPSS Sta	tistics Viewer		_ & ×
File Edit View Data Transform Insert Format	Analyze Direct Marketing Graphs	Utilities Add-ons Window Help	
😑 H 🖨 👌 🤌 💷 🗠 🛥 🧝 🖺 📥 🗐	Reports , 🔶 🖡	+ -	
+ € Output	Descriptive Statistics	requencies	
	Tables 👌 🔤 D	Descriptives	
	Compare Means	xplore	
	General Linear Model 🔹 🛉 🔤 🕻	crosstabs	
	Generalized Linear Models	Ratio	
	Mixed Models	- P-P Plots	
	Correlate	Q-Q Plots	
	Regression	<u> </u>	
	Loglinear ·		
	Neural Networks		
	Classify		
	Dimension Reduction		
	Scale >		
	Nonparametric Tests		
	Forecasting		
	<u>S</u> urvival		
	Multiple Response		
	Missing Value Analysis		
	Multiple Imputation		
	Complex Samples		
	Quality Control		
	ROC Curve		
Crosstabs		IBM SPSS Statistics Processor is ready	

👔 Crosstabs		×
Student Identifier [Stud Item #14 [Item#14] Item #27 [Item#27] Item #28 [Item#28] Item #29 [Item#29] Item #30 [Item#30] Item #60 [Item#60] Item #62 [Item#62] Item #64 [Item#64]	Row(s): Major Column(s): Class Standing [ClassStandi] Layer 1 of 1 Previous Next	Exact Statistics Cells Format Bootstr <u>a</u> p
■ Display clustered bar charts ■ Suppress tables	Display layer variables in table layers Reset Cancel Help	

The output will show how many students in each major are in each class (for example, there are 4 sophomores (class standing 2) in major 260).

		Class Star	nding		Total
		2	3	4	
	130	0	0	1	1
	140	1	0	3	4
	150	0	4	14	18
	160	0	0	2	2
	180	1	4	8	13
Major	190	0	0	1	1
	210	1	1	5	7
	230	0	0	3	3
	240	0	3	10	13
	250	0	2	5	7
	260	4	1	13	18
Total		7	15	65	87

Major * Class Standing Crosstabulation

In my data, I did not have enough sophomores or juniors to compare majors. For the seniors, I decided to compare majors with 10 or more students. Do this through Data -> Select Cases.

Click on "If" and type the conditions you want into the box (you can enter variable names by selecting from the box on the left and clicking the arrow, but you will have to type the ANDs and ORs and ='s and values). Example:

📬 Select Cases: If 🗙							
♣ Student ⁴	(Major = 150 or Major = 180 or Major = 240 or Major = 260) and ClassStanding = 4						
 Item #14 Item #27 Item #28 Item #29 Item #30 Item #60 Item #60 Item #64 Item #64 Item #73 Item #87 Item #87 Item #90 Item #90 	+ > 7 8 9 All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation > ** ~ () Delete > Functions and Special Variables:						
	Continue Cancel Help						

Run the ANOVA as for ClassStanding (see examples above), but using the variable Major in the "Factor" box. Here is the output from my sample data.

Descriptives

Percen	t Correct							
					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
150	14	46.75714%	13.645834%	3.647003%	38.87827%	54.63601%	27.300%	72.700%
240	10	56.36000%	12.213763%	3.862331%	47.62280%	65.09720%	34.500%	74.500%
260	13	41.26154%	10.109776%	2.803947%	35.15226%	47.37081%	23.600%	60.000%
Total	37	47.42162%	13.216386%	2.172760%	43.01506%	51.82818%	23.600%	74.500%

ANOVA

Percent Correct

	Sum of Squares	df	Mean Square	F	Sig.		
Between Groups	1298.434	2	649.217	4.424	.020		
Within Groups	4989.789	34	146.759				
Total	6288.223	36					

My groups differed significantly ($F_{2,34} = 4.424$, p = .020).

To see how the groups differed from each other examine the Tukey results:

Post Hoc Tests Multiple Comparisons Dependent Variable: Percent Correct Tukey HSD							
(I) Majo	or (J) Major	Mean	Std. Error	Sig.	95% Confidence	e Interval	
		Difference (I-J)			Lower Bound	Upper Bound	
150	240	-9.602857%	5.015835%	.150	-21.89384%	2.68812%	
150	260	5.495604%	4.666033%	.474	-5.93821%	16.92942%	
240	150	9.602857%	5.015835%	.150	-2.68812%	21.89384%	
240	260	15.098462% [*]	5.095583%	.015	2.61206%	27.58486%	
260	150	-5.495604%	4.666033%	.474	-16.92942%	5.93821%	
200	240	-15.098462% [*]	5.095583%	.015	-27.58486%	-2.61206%	

*. The mean difference is significant at the 0.05 level.

Major 260 (Other) scored 15 percentage-points lower than Major 240 (Science/Math). This difference was statistically significant (p = .015) using the Tukey procedure to control the familywise Type I error rate. (see comments above about post hoc comparisons for more information).

Analysis 3. Reliability

You might want to know the reliability of the scores for <u>your</u> students. Reliability is an index of how well students can be separated by their scores. If your students are more alike than the SAILS norming sample, they will not be separated as reliably. If your students are more variable than the norming sample, they will be separated more reliably.

On the Analyze menu, go to Scale -> Reliability Analysis

Click the items included in the score (generally, all items). You can select multiple items by clicking on the first one, holding the shift key, and selecting the last item. Click the arrow to move the selection to the "Items" box.

Reliability Analysis						
 Class Standing Major Number Correct Percent Correct 	•	Items: is Item #14 [Item Item #27 [Item Item #28 [Item Item #29 [Item Item #30 [Item Item #60 [Item	Statistics			
Model: Alpha • Scale label: OK Paste Reset Cancel Help						

The most common reliability estimate is coefficient alpha (α), also called Cronbach's α . For items scored right/wrong (such as on the SAILS test), this index is also called KR-20. This is an estimate of the correlation between scores on the current test form and another hypothetical test form selected randomly from the same hypothetical pool of items. Choose Alpha in the selection box next to Model. An example of the resulting output:

Reliability Statistics

Cronbach's Alpha	N of Items
.791	55

This indicates that the correlation between two randomly selected forms is estimated to be .791 for this group of students. Another way of interpreting this is that about 79% of the variance in scores is due to true differences and 21% is due to measurement error.

Another reliability estimate that is increasingly used is Guttman's lambda-2 (λ_2). $\lambda_2 \ge \alpha$. While α is an estimate of the correlation between scores on randomly-equivalent test forms, λ_2 is intended as an estimate of the correlation between scores on parallel test forms and thus will generally be higher than α (although it is still a lower-bound to the correlation between parallel scores).

Choose Guttman in the selection box next to Model.

🚡 Reliability Analysis				
		Items:	Statistics	
Class Standing		🚴 Item #14 [Item 🕤	()	
✓ Major		♣ Item #27 [Item		
Number Correct		♣ Item #28 [Item		
Percent Correct		& Item #29 [Item		
		& Item #30 [Item		
		🜲 Item #60 [Item 🚽		
Model: Guttman ·				
Scale label:				
OK Paste Reset Cancel Help				

Reliability Statistics

Lambda	1	.776
	2	.812
	3	.791
	4	.657
	5	.791
	6	
N of Items		55

Of these Guttman indices, lambda 2 (λ_{2}) or lambda 3 (λ_{3}) is the estimate generally used. Guttman proposed λ_1 only as a starting point in his derivations, not as an index to actually be reported. λ_3 is identical to α . Here, the estimated correlation between parallel forms, based on lambda 2 (λ_2), is .812. Equivalently, 81% of the variance is due to true scores and 19% is due to error (error is defined slightly differently for λ_2 than it was for α).

Interpreting reliability estimates

As stated above, reliability is an index of how well students can be differentiated by their scores. If the examinees don't really differ very much in their abilities, most of the differences in their scores will be due to error (low reliability). But assuming error variance remains constant, the same test might be able to reliably differentiate between examinees in a group that has a wider range of differences in ability. For example, the SAT is probably not very reliable for differentiating among Harvard students but it is very reliable in the population of college applicants as a whole.

There is no single guideline for interpreting reliability estimates but there are recommendations from the literature:

At least 0.70 for group-level interpretations, such as program evaluation, or research;

At least 0.80 for low-stakes individual decisions, such as instructional feedback or a small part of a course grade;

At least 0.90 if the scores are to be used for high-stakes decisions about individual students, such as admissions testing, promotion, or classifying into remedial and advanced courses.

Buckendahl, C. W., Impara, J. C., & Plake, B. S. (2002). District accountability without a state assessment: A proposed model. *Educational measurement: Issues and Practice*, 21 (4), 6-16.

Loo, R. (2001). Motivational orientations toward work: An evaluation of the Work Preference Inventory (Student form). *Measurement and Evaluation in Counseling and Development*, 34, 222-233.

Roid, G. H. (2006). Designing ability tests. In S. M. Downing & T. M. Haladyna, *Handbook of Test Development* (pp. 527-542). Mahwah, NJ: LEA.

Skorupski, W. P. (2008, August). A review and empirical comparison of approaches for improving the reliability of objective level scores. Available at http://www.ccsso.org/Documents/2008/Approaches_for_Improving_the_Reliability_2008. pdf